Oscillatory tank-treading motion of erythrocytes in shear flows.

نویسندگان

  • W R Dodson
  • P Dimitrakopoulos
چکیده

In this paper, we investigate the oscillatory dynamics of the tank-treading motion of healthy human erythrocytes in shear flows with capillary number Ca = O(1) and small to moderate viscosity ratios 0.01 ≤ λ ≤ 1.5. These conditions correspond to a wide range of surrounding medium viscosities (4-600 m Pa s) and shear flow rates (2-560 s(-1)), and match those used in ektacytometry systems. For a given viscosity ratio, as the flow rate increases, the steady-state erythrocyte length L (in the shear plane) increases logarithmically while its depth W (normal to the shear plane) decreases logarithmically. In addition, the flow rate increase dampens the oscillatory erythrocyte inclination but not its length oscillations (which show relative variations of about 5-8%). For a given flow rate, as the viscosity ratio increases, the erythrocyte length L contracts while its depth W increases (i.e., the cell becomes less deformed) with a small decrease in the length variations. The average orientation angle of the erythrocyte shows a significant decrease with the viscosity ratio as does the angle oscillation while the oscillation period increases. These trends continue in higher viscosity ratios resulting eventually in the transition from a (weakly oscillatory) tank-treading motion to a tumbling motion. Our computations show that the erythrocyte width S, which exists in the shear plane, is practically invariant in time, capillary number, and viscosity ratio, and corresponds to a real cell thickness of about 2.5 μm. Comparison of our computational results with the predictions of (low degree-of-freedom) theoretical models and experimental findings, suggests that the energy dissipation due to the shape-memory effects is more significant than the energy dissipation due to the membrane viscosity. Our work shows that the oscillatory tank-treading motion can account for more than 50% of the variations found in ektacytometry systems; thus, researchers who wish to study inherent differences between erythrocytes within a population must devise a way of monitoring individual cells over time so that they can remove the oscillation effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tank-treading of swollen erythrocytes in shear flows.

In this paper, we investigate computationally the oscillatory tank-treading motion of healthy swollen human erythrocytes (owing to lower than physiological plasma osmolarity) in shear flows with capillary number Ca=O(1) and small to moderate viscosity ratios 0.01≤λ≤2.75. Swollen cells show similar shear flow dynamics with normal cells but with significantly higher inclination and tank-treading ...

متن کامل

Tank-treading of erythrocytes in strong shear flows via a nonstiff cytoskeleton-based continuum computational modeling.

We develop a computationally efficient cytoskeleton-based continuum erythrocyte algorithm. The cytoskeleton is modeled as a two-dimensional elastic solid with comparable shearing and area-dilatation resistance that follows a material law (Skalak, R., A. Tozeren, R. P. Zarda, and S. Chien. 1973. Strain energy function of red blood cell membranes. Biophys. J. 13:245-264). Our modeling enforces th...

متن کامل

Tank treading of optically trapped red blood cells in shear flow.

Tank-treading (TT) motion is established in optically trapped, live red blood cells (RBCs) held in shear flow and is systematically investigated under varying shear rates, temperature (affecting membrane viscosity), osmolarity (resulting in changes in RBC shape and cytoplasmic viscosity), and viscosity of the suspending medium. TT frequency is measured as a function of membrane and cytoplasmic ...

متن کامل

Dynamic modes of red blood cells in oscillatory shear flow.

The dynamics of red blood cells (RBCs) in oscillatory shear flow was studied using differential equations of three variables: a shape parameter, the inclination angle θ, and phase angle ϕ of the membrane rotation. In steady shear flow, three types of dynamics occur depending on the shear rate and viscosity ratio. (i) tank-treading (TT): ϕ rotates while the shape and θ oscillate. (ii) tumbling (...

متن کامل

Full dynamics of a red blood cell in shear flow.

At the cellular scale, blood fluidity and mass transport depend on the dynamics of red blood cells in blood flow, specifically on their deformation and orientation. These dynamics are governed by cellular rheological properties, such as internal viscosity and cytoskeleton elasticity. In diseases in which cell rheology is altered genetically or by parasitic invasion or by changes in the microenv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 84 1 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2011